Probabilistic Machine Learning is an approach that integrates probabilistic modeling and Bayesian decision theory into machine learning methods. It emphasizes the interpretation of uncertainty in predictions and the relationships within data.
[Xem chi tiết]📚📚 I. THÔNG TIN SẢN PHẨM
📒 Mã sản phẩm : STT515b
📒 Nhà xuất bản : The MIT Press (March 1, 2022)
📒 Tác giả : Kevin P. Murphy
📒 ISBN : 0262046822
📒 Số trang : 864 trang
📒 Hình thức : Bìa Mềm, in ĐEN TRẮNG
📒 Loại : Sách gia công đóng gáy keo chắc chắn chất lượng cao
📒 Giấy in : Giấy ngoại định lượng 70msg, viết vẽ và hightlight thoải mái.
📒 Chất lượng : Bản in rõ nét, giá rất tốt cho mọi người.
📚📚 II. MÔ TẢ SẢN PHẨM
📒 1.Mô tả sản phẩm
A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory.
This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation.
Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.
📒 2. Tác giả
Kevin P. Murphy is a Research Scientist at Google in Mountain View, California, where he works on AI, machine learning, computer vision, and natural language understanding.
Sản phẩm đa dạng : Đầu sách phong phú. Nhận In sách theo yêu cầu.
Tư vấn nhiệt tình : Giải đáp mọi yêu cầu của khách hàng nhanh chóng.
Uy tín - Chất lượng : Bán hàng bằng cả trái tim.
Giá luôn luôn tốt : Giá luôn thấp nhất thị trường.