In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics.
[Xem chi tiết]I. THÔNG TIN SẢN PHẨM
Mã sản phẩm : STT311
Nhà xuất bản: Bradford Books; second edition (November 13, 2018)
Tác giả : Richard S. Sutton, Andrew G. Barto
Ngôn Ngữ : Tiếng Anh
ISBN : 0262039249
Số trang : 552 pages
Hình thức : Bìa Mềm, IN ĐEN TRẮNG
Loại : Sách gia công đóng gáy keo chắc chắn chất lượng cao
Giấy in : Giấy ngoại định lượng 70msg, viết vẽ và hightlight thoải mái.
Chất lượng : Bản in rõ nét, giá rất tốt cho mọi người.
II. MÔ TẢ SẢN PHẨM
1.Mô tả sản phẩm
Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics.
Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
2. Tác giả
Richard S. Sutton is Professor of Computing Science and AITF Chair in Reinforcement Learning and Artificial Intelligence at the University of Alberta, and also Distinguished Research Scientist at DeepMind.
Andrew G. Barto is Professor Emeritus in the College of Computer and Information Sciences at the University of Massachusetts Amherst.
Sản phẩm đa dạng : Đầu sách phong phú. Nhận In sách theo yêu cầu.
Tư vấn nhiệt tình : Giải đáp mọi yêu cầu của khách hàng nhanh chóng.
Uy tín - Chất lượng : Bán hàng bằng cả trái tim.
Giá luôn luôn tốt : Giá luôn thấp nhất thị trường.